BG_Flood  0.8
Documentation (Work-in-progress)
Kurganov.h File Reference
#include "General.h"
#include "Param.h"
#include "Arrays.h"
#include "Forcing.h"
#include "MemManagement.h"
#include "Util_CPU.h"
Include dependency graph for Kurganov.h:
This graph shows which files directly or indirectly include this file:

Go to the source code of this file.

Functions

template<class T >
__global__ void updateKurgXGPU (Param XParam, BlockP< T > XBlock, EvolvingP< T > XEv, GradientsP< T > XGrad, FluxP< T > XFlux, T *dtmax, T *zb)
 
template<class T >
__global__ void AddSlopeSourceXGPU (Param XParam, BlockP< T > XBlock, EvolvingP< T > XEv, GradientsP< T > XGrad, FluxP< T > XFlux, T *zb)
 
template<class T >
__host__ void updateKurgXCPU (Param XParam, BlockP< T > XBlock, EvolvingP< T > XEv, GradientsP< T > XGrad, FluxP< T > XFlux, T *dtmax, T *zb)
 
template<class T >
__host__ void AddSlopeSourceXCPU (Param XParam, BlockP< T > XBlock, EvolvingP< T > XEv, GradientsP< T > XGrad, FluxP< T > XFlux, T *zb)
 
template<class T >
__global__ void updateKurgYGPU (Param XParam, BlockP< T > XBlock, EvolvingP< T > XEv, GradientsP< T > XGrad, FluxP< T > XFlux, T *dtmax, T *zb)
 
template<class T >
__global__ void AddSlopeSourceYGPU (Param XParam, BlockP< T > XBlock, EvolvingP< T > XEv, GradientsP< T > XGrad, FluxP< T > XFlux, T *zb)
 
template<class T >
__host__ void updateKurgYCPU (Param XParam, BlockP< T > XBlock, EvolvingP< T > XEv, GradientsP< T > XGrad, FluxP< T > XFlux, T *dtmax, T *zb)
 
template<class T >
__host__ void AddSlopeSourceYCPU (Param XParam, BlockP< T > XBlock, EvolvingP< T > XEv, GradientsP< T > XGrad, FluxP< T > XFlux, T *zb)
 
template<class T >
__global__ void updateKurgXATMGPU (Param XParam, BlockP< T > XBlock, EvolvingP< T > XEv, GradientsP< T > XGrad, FluxP< T > XFlux, T *dtmax, T *zb, T *Patm, T *dPdx)
 
template<class T >
__host__ void updateKurgXATMCPU (Param XParam, BlockP< T > XBlock, EvolvingP< T > XEv, GradientsP< T > XGrad, FluxP< T > XFlux, T *dtmax, T *zb, T *Patm, T *dPdx)
 
template<class T >
__global__ void updateKurgYATMGPU (Param XParam, BlockP< T > XBlock, EvolvingP< T > XEv, GradientsP< T > XGrad, FluxP< T > XFlux, T *dtmax, T *zb, T *Patm, T *dPdy)
 
template<class T >
__host__ void updateKurgYATMCPU (Param XParam, BlockP< T > XBlock, EvolvingP< T > XEv, GradientsP< T > XGrad, FluxP< T > XFlux, T *dtmax, T *zb, T *Patm, T *dPdy)
 
template<class T >
__host__ __device__ T KurgSolver (T g, T delta, T epsi, T CFL, T cm, T fm, T hp, T hm, T up, T um, T &fh, T &fu)
 

Function Documentation

◆ AddSlopeSourceXCPU()

template<class T >
__host__ void AddSlopeSourceXCPU ( Param  XParam,
BlockP< T >  XBlock,
EvolvingP< T >  XEv,
GradientsP< T >  XGrad,
FluxP< T >  XFlux,
T *  zb 
)

◆ AddSlopeSourceXGPU()

template<class T >
__global__ void AddSlopeSourceXGPU ( Param  XParam,
BlockP< T >  XBlock,
EvolvingP< T >  XEv,
GradientsP< T >  XGrad,
FluxP< T >  XFlux,
T *  zb 
)

◆ AddSlopeSourceYCPU()

template<class T >
__host__ void AddSlopeSourceYCPU ( Param  XParam,
BlockP< T >  XBlock,
EvolvingP< T >  XEv,
GradientsP< T >  XGrad,
FluxP< T >  XFlux,
T *  zb 
)

◆ AddSlopeSourceYGPU()

template<class T >
__global__ void AddSlopeSourceYGPU ( Param  XParam,
BlockP< T >  XBlock,
EvolvingP< T >  XEv,
GradientsP< T >  XGrad,
FluxP< T >  XFlux,
T *  zb 
)

◆ KurgSolver()

template<class T >
__host__ __device__ T KurgSolver ( g,
delta,
epsi,
CFL,
cm,
fm,
hp,
hm,
up,
um,
T &  fh,
T &  fu 
)

◆ updateKurgXATMCPU()

template<class T >
__host__ void updateKurgXATMCPU ( Param  XParam,
BlockP< T >  XBlock,
EvolvingP< T >  XEv,
GradientsP< T >  XGrad,
FluxP< T >  XFlux,
T *  dtmax,
T *  zb,
T *  Patm,
T *  dPdx 
)

◆ updateKurgXATMGPU()

template<class T >
__global__ void updateKurgXATMGPU ( Param  XParam,
BlockP< T >  XBlock,
EvolvingP< T >  XEv,
GradientsP< T >  XGrad,
FluxP< T >  XFlux,
T *  dtmax,
T *  zb,
T *  Patm,
T *  dPdx 
)

◆ updateKurgXCPU()

template<class T >
__host__ void updateKurgXCPU ( Param  XParam,
BlockP< T >  XBlock,
EvolvingP< T >  XEv,
GradientsP< T >  XGrad,
FluxP< T >  XFlux,
T *  dtmax,
T *  zb 
)

◆ updateKurgXGPU()

template<class T >
__global__ void updateKurgXGPU ( Param  XParam,
BlockP< T >  XBlock,
EvolvingP< T >  XEv,
GradientsP< T >  XGrad,
FluxP< T >  XFlux,
T *  dtmax,
T *  zb 
)

◆ updateKurgYATMCPU()

template<class T >
__host__ void updateKurgYATMCPU ( Param  XParam,
BlockP< T >  XBlock,
EvolvingP< T >  XEv,
GradientsP< T >  XGrad,
FluxP< T >  XFlux,
T *  dtmax,
T *  zb,
T *  Patm,
T *  dPdy 
)

Topographic source term

In the case of adaptive refinement, care must be taken to ensure well-balancing at coarse/fine faces

◆ updateKurgYATMGPU()

template<class T >
__global__ void updateKurgYATMGPU ( Param  XParam,
BlockP< T >  XBlock,
EvolvingP< T >  XEv,
GradientsP< T >  XGrad,
FluxP< T >  XFlux,
T *  dtmax,
T *  zb,
T *  Patm,
T *  dPdy 
)

Topographic source term

In the case of adaptive refinement, care must be taken to ensure well-balancing at coarse/fine faces (see [notes/balanced.tm]()).

◆ updateKurgYCPU()

template<class T >
__host__ void updateKurgYCPU ( Param  XParam,
BlockP< T >  XBlock,
EvolvingP< T >  XEv,
GradientsP< T >  XGrad,
FluxP< T >  XFlux,
T *  dtmax,
T *  zb 
)

Topographic source term

In the case of adaptive refinement, care must be taken to ensure well-balancing at coarse/fine faces

◆ updateKurgYGPU()

template<class T >
__global__ void updateKurgYGPU ( Param  XParam,
BlockP< T >  XBlock,
EvolvingP< T >  XEv,
GradientsP< T >  XGrad,
FluxP< T >  XFlux,
T *  dtmax,
T *  zb 
)

Topographic source term

In the case of adaptive refinement, care must be taken to ensure well-balancing at coarse/fine faces (see [notes/balanced.tm]()).